Input-gradient space particle inference for neural network ensembles
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which employs a kernelized repulsion term to diversify the particles to cover the
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TL;DR: We learn an ensemble of neural networks that L S I wir, i o 2 " : n the corresponding input dimension.
IS diverse with respect to their input gradients. !
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Repulsive deep ensembles (RDEs) [1] : : : : it o grounc I EanE— (E—E— —— 98¢ dd ad
M g h Repulsion. force.in lengthscale in the d—th dimension
Description: Train an ensemble 10 }i=1 using Wasserstein gradient descent [2], I the d-th dimension
1.2 0 Deep ensemble Weight-RDE Function-RDE FORDE (ours)
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Repulsion force

Driving force

* The driving force directs the particles towards high density regions of the
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Diversify using the repulsion term
with an input-gradient kernel.

Backprop to calculate the input
gradients (first-order derivatives)

Possible advantages:
« Each member is guaranteed to represent a different function;

* The issues of weight- and function-space repulsion are avoided;

 Each member is encouraged to learn different features, which can improve
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For a 1D regression task (above) and a 2D classification task (below), FORDEs
capture higher uncertainty than baselines in all regions outside of the training data.
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Proposition: One should apply strong forces in high-variance dimensions
(more in-between uncertainty) and weak forces in low-variance dimensions
\(Iess in-between uncertainty). D
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osterior. e : : . :
p . . rObUStneSS' FOI’ the 2D ClaSSIfICatIOn taSk’ we VISUB'IZG the entropy Of the predlctlve posterlors. In high-variance data dimensions, distances between In low-variance data dimension, data points lie close to
* The repulsion force pushes the particles away from each other to enforce data points are large, which lead to more in-between each other, leading to less in-between uncertainty & we
. . uncertainty =» we can apply strong repulsion force to need to use weak repulsion force.
dive rSIty. . push the input gradients far away from each other.
Main takeaways
Problem: It is unclear how to define the repulsion term for neural networks: _ _ .
P s N\ - Use PCA to get the eigenvalues and eigenvectors of the training data: {ug, \s}1_;

» weight-space repulsion is ineffective due to overparameterization.
» function-space repulsion often results in underfitting.

1. Input-gradient-space repulsion can perform better than weight- and function-space repulsion. . Define the base kernel:
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2. Better corruption robustness can be achieved by configuring the repulsion kernel using the eigen-decomposition kpoa(s,s';3,) = exp (——(UTS ~U's)'s H(U's — UTs’))

L of the training data. B
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‘U= |u w up| is a matrix containing the eigenvectors as columns.
* ¥ ' = (1 — a)I + aA where A is a diagonal matrix containing the eigenvalues.

Defining the input-gradient kernel &

Benchmark comparison

Given a base kernel k, we define the kernel in the input-gradient space for a

minibatch of training samples 3 = {(Xb, yb)}szl as follows: Lengthscale tuning experiments

Table 1: FORDE-PCA achieves the best performance under corruptions while FORDE-Identity Table 2: FORDE-PCA achieves the best performance under corruptions while FoORDE-Identity
outperforms baselines on clean data. FORDE-Tuned outperforms baselines on both clean and has the best NLL on clean data. FORDE-Tuned outperforms most baselines on both clean and
corrupted data. Results of RESNET18 / CIFAR-100 averaged over 5 seeds. Each ensemble has 10 corrupted data. Results of RESNET18 / CIFAR-10 averaged over 5 seeds. Each ensemble has 10

ResNet18 / CIFAR-100
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members. cA, ¢cNLL and cECE are accuracy, NLL, and ECE on CIFAR-100-C. members. cA, cNLL and cECE are accuracy, NLL, and ECE on CIFAR-10-C. Clean data Severity level 1, 2, 3 Severity level 4, 5
S - 63 " 445 ~
METHOD NLL | ACCURACY (%) 1t ECE | CA /CcNLL / CECE METHOD NLL | ACCURACY (%) 1 ECE | CA /cNLL / CECE <520 ~e—" 5 / : .
>
T DEEP ENSEMBLES 0.70£0.00 81.840.2 0.041+0.003  54.3/1.9970.05 DEEP ENSEMBLES 0.117+0.001 96.3+0.1 0.005+0.001  78.1/0.7870.08 ~ A . N 63.0 . 44.0 ./
Take the average overall  Compare the input gradients of two particles WEIGHT-RDE 0.70+0.01 81.740.3 0.043+0.004  54.2/2.01/0.06 WEIGHT-RDE 0.117+0.002 96.2-+0.1 0.005-£0.001  78.0/0.78/0.08 = / 43 /
i . . A440. . . 1/0. . < e et Tt | IR | > oy B
FORDE-PCA (OURS) 0.71-+0.00 81.4-0.2 0.039+0.002 56.1/1.90/0.05 FEATURE-RDE 0-116-0.001 96401 0.004+0.001  78.1/0.777/0.08 43.0
FORDE-IDENTITY (OURS) 0.70-+0.00 82.1+0.2 0.043-+£0.001 54.1/2.0270.05 FORDE-PCA (OURS) 0.125+0.001 96.1+0.1 0.006-+0.001 80.5/0.71/0.07 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
, FORDE-TUNED (OURS) 0.70--0.00 82.1+0.2 0.044--0.002  55.3/1.94/0.05 FORDE-IDENTITY (OURS) ~ 0.113--0.002 96.340.1 0.005:0.001 78.0/0.80/0.08 . a a a
We choose the RBF kernel on a unit sphere as the base kernel ~ : FORDE-TUNED (OURS) 0.114-+0.002 96.4+0.1 0.005+0.001  79.1/0.74/0.07 Z; — 1 A I . A I . A
k(si,8:;2) = exp _i(s. —s;) 2 (s; —s5) S — Vaf(x;05), * Blue lines show accuracies of FORDEs, while dotted orange lines show accuracies
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2h : V£ (x;0;),]]2 . of Deep ensembles.
T clerences _ _ _ | | | - When moving from the identity lengthscale I to the PCA lengthscales A
| | | | B o | | [1] F. D’Angelo and V. Fortuin, “Repulsive deep ensembles are Bayesian,” Advances in Neural Information Processing Systems, vol. 34, pp. 3451-3465, 2021. - FORDESs exhibit small performance degradations on clean images of CIFAR-100:
A scalar adaptively adjusted Diagonal matrix containing Normalize input gradients to unit

[2] C. Liu, J. Zhuo, P. Cheng, R. Zhang, and J. Zhu, “Understanding and Accelerating Particle-Based Variational Inference,” in International Conference on Machine Learning, 2019.

» while becomes more robust against the natural corruptions of CIFAR-100-C.

to prevent kernel vanishing. the lengthscales. vectors.
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